A double oracle approach to minmax regret optimization problems with interval data
نویسندگان
چکیده
In this paper, we provide a generic anytime lower bounding procedure for minmax regret optimization problems. We show that the lower bound obtained is always at least as accurate as the lower bound recently proposed by Chassein and Goerigk [2]. The validity of the bound is based on game theoretic arguments and its computation is performed via a double oracle algorithm [6] that we specify. The lower bound can be efficiently computed for any minmax regret optimization problem whose standard version is “easy”. We describe how to efficiently embed this lower bound in a branch and bound procedure. Finally we apply our approach to the robust shortest path problem. Our numerical results show a significant gain in the computation times.
منابع مشابه
Some tractable instances of interval data minmax regret problems: bounded distance from triviality (short version)
This paper focuses on tractable instances of interval data minmax regret graph problems. More precisely, we provide polynomial and pseudopolynomial algorithms for sets of particular instances of the interval data minmax regret versions of the shortest path, minimum spanning tree and weighted (bipartite) perfect matching problems. These sets are defined using a parameter that measures the distan...
متن کاملDiscrete Optimization with Interval Data - Minmax Regret and Fuzzy Approach
One day, you will discover a new adventure and knowledge by spending more money. But when? Do you think that you need to obtain those all requirements when having much money? Why don't you try to get something simple at first? That's something that will lead you to know more about the world, adventure, some places, history, entertainment, and more? It is your own time to continue reading habit....
متن کاملA Probabilistic Model for Minmax Regret in Combinatorial Optimization
In this paper, we propose a probabilistic model for minimizing the anticipated regret in combinatorial optimization problems with distributional uncertainty in the objective coefficients. The interval uncertainty representation of data is supplemented with information on the marginal distributions. As a decision criterion, we minimize the worst-case conditional value-at-risk of regret. The prop...
متن کاملRandomized Minmax Regret for Combinatorial Optimization Under Uncertainty
The minmax regret problem for combinatorial optimization under uncertainty can be viewed as a zero-sum game played between an optimizing player and an adversary, where the optimizing player selects a solution and the adversary selects costs with the intention of maximizing the regret of the player. Existing minmax regret models consider only deterministic solutions/strategies, and minmax regret...
متن کاملThe Minmax Regret Shortest Path Problem with Interval Arc Lengths
This paper considers the shortest path problem on directed acyclic graphs, where the uncertainty of input data (lengths of arcs) is modeled in the form of intervals. In order to handle the interval data the minmax criterion to the regret values is applied, where the original objective function with interval coefficients is transformed into that of finding the least maximum worst-case regret, wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European Journal of Operational Research
دوره 262 شماره
صفحات -
تاریخ انتشار 2017